
Driving Requirements Evolution by Engineers’ Opinions
Kyanna Dagenais
McMaster University
Hamilton, Canada

dagenaik@mcmaster.ca

Istvan David
McMaster University
Hamilton, Canada

istvan.david@mcmaster.ca

ABSTRACT
Requirements are often incomplete or imprecise. Especially when
innovation is a pronounced aspect of product development, suffi-
ciently refined requirements can only be obtained by leveraging
engineering knowledge gained through the exploration of inno-
vative designs. However, such innovative designs often contradict
prevalent requirements and might be deemed incorrect unless re-
quirements evolve. In this paper, we present a method to drive
requirements evolution by engineering opinions—early indicators
of emergent engineering knowledge. Opinions about the suitability
of a new design emerge earlier than hard evidence can be produced,
potentially accelerating the evolution of requirements and saving
time and costs. In this work, we develop a sound formal framework
to inform requirements engineers about the potential need for re-
quirements evolution based on engineering opinions. We formalize
engineering opinions in terms of subjective logic and unify them
with key concepts of model-driven engineering.

CCS CONCEPTS
• Computing methodologies→Modeling methodologies; Un-
certainty quantification.

KEYWORDS
collaboration, consistency, design space exploration, model-driven
engineering, ontologies, parallel engineering, uncertainty
ACM Reference Format:
Kyanna Dagenais and Istvan David. 2024. Driving Requirements Evolu-
tion by Engineers’ Opinions. In ACM/IEEE 27th International Conference on
Model Driven Engineering Languages and Systems (MODELS Companion ’24),
September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3652620.3688566

1 INTRODUCTION
Proper elicitation, formalization, and interpretation of requirements
are key to developing correct software and systems [7]. However,
requirements tend to be incomplete, imprecise, and misleadingly
incorrect [22], leading to costly and failing projects. Especially in
domains that require continuous innovation, eventual requirements
are often shaped by engineers and experts. For example, in automo-
tive software systems engineering, it is common to have high-level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688566

requirements to outline desired features by reusing ideas from pre-
vious projects [2], and allow detailed specifications to emerge at
the leaves of the system decomposition tree [60]. This is due to the
high degree of uncertainty [54] on the customer’s side in complex
engineering projects, caused by factors such as missing information
or expertise, and the client stakeholders’ difficulties in separating
requirements from desires [24]. In contrast, important insights are
gained on the engineering side by exploring the design space [2]
and encountering promising alternative designs.

A large portion of alternative designs might be incompatible
with the requirements, but engineers may still be confident in their
design choices. Such cases are the ones when innovative ideas
emerge and drive the evolution of requirements. Unfortunately, ver-
ifying the correctness of alternative designs might be cumbersome
(e.g., a physical prototype might be required to be built and tested
in a wind tunnel), slowing down the engineering and innovation
process. To foster agility in engineering processes, we argue that
engineers should be to able express their opinions about the worth-
whileness of an alternative design to drive requirements toward
beneficial directions. However, working with inherently subjective
constructs such as opinions should still happen in a rigorous and
formal fashion to remain systematic in engineering processes.

In this paper, we present a method to drive the evolution of
requirements from the engineering side, by considering subjective
opinions of experts (e.g., engineers, researchers, domain experts).
Our goal is to notify requirements engineers as early as possible
about the emergence of alternative designs that are likely worth
presenting to clients for validation. To this end, we construct a
formal framework with safety and liveness guarantees, based on
subjective logic [33]. Subjective logic promotes opinions—e.g., engi-
neers’ confidence in their design—to first-class citizens, and allows
for sound conclusions despite the subjective aspects it codifies.

Unfortunately, the complex framework of subjective logic limits
its applicability. Most techniques that rely on it resort to simpli-
fications, e.g., assuming that humans can express their opinions
in terms of mathematical abstractions [8]; or emulating human
opinion by objectively measured metrics, taking away the core
subjective element of the approach [59]. Aptly, however, the for-
mal facilities of model-driven engineering (MDE) [52] allow for a
refined setup and calibration of subjective logic through a blend
of objective factors, such as model correctness and consistency;
and subjective factors, such as the heuristics engineers have about
model correctness through perceived consistency [17]. We develop
our method accordingly to avoid simplification of subjective logic
and leverage it to its fullest extent.

The theory developed in this work has been successfully applied
in our recent work on opinion-guided reinforcement learning [13]
and forms the foundation for our work in reinforcement learning-
driven model repair [12].

Author pre-print.

Accepted for the 6th International Workshop on Multi-Paradigm Modeling for Cyber-Physical Systems. Official publication may differ.

Author pre-print. Publication accepted for the 6th International Workshop on Multi-Paradigm Modeling for Cyber-Physical Systems (MPM4CPS’24).

https://orcid.org/0009-0007-6304-3971
https://orcid.org/0000-0002-4870-8433
https://doi.org/10.1145/3652620.3688566
https://doi.org/10.1145/3652620.3688566
http://msdl.uantwerpen.be/conferences/MPM4CPS/2024/
http://msdl.uantwerpen.be/conferences/MPM4CPS/2024/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kyanna Dagenais and Istvan David

stepwise movement

KBM216 2P 13s

Requirements

mM

⟦.⟧⊨

⟦.⟧⊭

Consistent

D1

Exploration

mE

13s (Large)

stepwise

movement

mM

Consistent

D2

mE

combined

movement

14s (Small)

Property

Design

Model

Legend

(a) Implicit semantics lead to perceived incorrectness

autonomous

safe

Customer's rudimentary/

cognitive model

stepwise movement

KBM216 2P 13s

mC

Physics

⟦.⟧

⟦.⟧
⟦.⟧⊨

mM

⟦.⟧⊨

⟦.⟧⊨
Requirements

Consistent

D1

Exploration

mE

13s (Large)

stepwise

movement

independent

mM

Consistent

D2

mE

combined

movement

14s (Small)

(b) Explicitly modeled semantics allow for sound conclusions about correctness

Figure 1: Running example: requirements and engineering models of an automated guided vehicle

Contributions. The contributions of this paper are the following.
• Wedefine amethod to incorporate engineering opinions

into the improvement of requirements.
• We define a systematic approach to employing subjec-

tive logic by MDE concepts.
• We identify challenges and research directions for the

model-driven engineering community.

2 DEMONSTRATIVE CASE
To illustrate our points, we rely on a real industry case of developing
an industrial automated guided vehicle (AGV). AGVs are portable
robots, often implemented as line followers [53], widely used in
industry settings, especially to carry payloads between locations.

The engineers are tasked with designing an AGV that is (i) safe
and (ii) autonomous. The client is represented by a technical stake-
holder who articulates the requirements based on a previous project.

Safety is associated with the stability of the AGV, i.e., preventing
tilting and toppling. Based on a previous project, the client suggests
ensuring safety by not allowing the AGV to move ahead and change
direction simultaneously. That is, the movement must be sequential.

Autonomy is defined as the ability to carry out a mission with-
out human intervention. In this electrified vehicle, autonomymostly
comes down to the selection of the battery to ensure sufficient
charge. Based on a previous project, the client suggests choosing a
specific battery from the supplier’s catalog.

Independence is the freedom to carry out missions upon meet-
ing safety and autonomy requirements. That is, the AGV must be
both safe and autonomous to be considered independent.

Safety and autonomy can be verified through simulations. Veri-
fying independence requires developing a prototype and passing
customer-defined test scenarios. However, engineers, from experi-
ence, can tell that safety and autonomy usually imply independence.

2.1 Engineering process
2.1.1 Requirements. The set of requirements the client has articu-
lated is shown in Fig. 1a. Safety requires stepwise movement; and
autonomy requires selecting the Kokam KBM216 2P 13S battery.

2.1.2 Initial design. Design 𝐷1 consists of the mechanical model
(𝑚𝑀) and the electrical model (𝑚𝐸). Following the recommenda-
tions of the technical stakeholder, the mechanical engineer imple-
ments a stepwise movement mechanism that either moves the AGV

forward or changes direction (but not at the same time); and the
electrical engineer chooses the 13S battery. We see that design𝐷1 in
Fig. 1a satisfies the required properties, i.e., the required movement
mechanism has been implemented, and the required battery has
been selected. Therefore, the design is considered to be correct.

2.1.3 Design space exploration. Suspecting the existence of more
optimal designs, the engineers explore the design space and stumble
upon alternative design 𝐷2, shown at the bottom of Fig. 1a. After
simulations, they realize that combined movement that allows the
AGV to move forward and change direction simultaneously will
not lead to instability, i.e., it is safe. By choosing this movement
mechanism, the length of the AGV’s trajectory decreases by about
20% in such road segments. The engineers estimate that about half of
the road segments would utilize a combined movement, shortening
mission distances by 10%. This is a substantial difference and allows
for an alternative, smaller battery, the 14S. This design is now lighter
and, consequently, more energy-efficient than the original.

2.1.4 Engineering intuition vs. verified design. Engineers verify the
safe and autonomous properties through simulation. However, veri-
fying independence is not feasible in a rapid exploration phase, as it
requires developing a physical prototype. Thus, the engineers have
no proof that the encountered alternative design is correct. Still,
they judge that (i) the likelihood that their design is correct is high
and (ii) the benefits of the design are sufficient to merit an investi-
gation of requirements. Seemingly, the engineers did not change
many parameters in the design either, i.e., they did not venture far
in the design space, which increases the certainty of their opinions.

2.1.5 Incorrect design? Unfortunately, design 𝐷2 in Fig. 1a is not
what the client required. The design now, seemingly, does not
satisfy the required properties (J.K⊭), i.e., it is deemed incorrect.

As shown in Fig. 1b, what we treated as requirements previously
are essentially the customer’s rudimentary, cognitive model𝑚𝐶 of
the envisioned system, chosen in a way that they satisfy the actual
set of required properties 𝑃𝑟𝑒𝑞 . As they interpret the requirements,
the engineers map the required properties into a more appropriate
semantic domain, in this case, ordinary physics. The mechanical
engineer interprets the safety requirement in terms of Newtonian
physics, specifically in relation to the stability of the AGV; and in
this view, stability requires the real part of the eigenvalue of the in-
ertia matrix to be negative, i.e., Re{𝜆𝐼} < 0. Similarly, the electrical

Driving Requirements Evolution by Engineers’ Opinions MODELS Companion ’24, September 22–27, 2024, Linz, Austria

engineer understands the autonomy property as the capacitance
of the battery being greater than the current drawn by the AGV
during its mission, i.e., 𝐶𝑏 > ∫ 𝑡𝑚𝑎𝑥

0 𝐼(𝑡)𝑑𝑡 . Such interpretations
through the preferred semantic domain might be a natural way to
look at the requirements or an artifact of a constructive argument.
For example, the mechanical engineer might introduce the notion
of inertia into the definition of safety when exploring more complex
movement patterns, such as combined movement. With the notion
of inertia being explicit, the engineer can now reason about velocity
and arrive at a design in which combined movement at a lower
velocity still satisfies safety constraints.

2.2 Lessons learned and requirements
First, Sec. 2.1.4 demonstrated the benefits of a lightweight and
rapid approach to channeling engineers’ insights into require-
ments management. Gathering hard evidence about the appropri-
ateness of alternative designs might not always be feasible or might
be cumbersome. But engineers might have well-informed opin-
ions that carry immense value for requirements engineers already
in the early phases of design [16]. For example, opinions as early
indicators of emerging new knowledge, could trigger the evolution
of requirements. Further safeguards to considering engineers’ opin-
ions might be desired, e.g., factoring in how far the engineers
ventured into the design space during exploration. Obviously,
the more parameters the engineers change in the alternative design,
the less certain their judgment might be.

Second, Sec. 2.1.5 demonstrated that maintaining an ontolog-
ical view allows for a more precise definition of correctness. An
incorrect design might be an artifact of inappropriately formulated
or partially elicited requirements. Thus, we need clearly expressed
semantics to allow for sound notions of correctness and consistency.

By taking an ontological stance, subjective opinions can be in-
formed through sound concepts. In this paper, we develop a formal
framework to support such ambitions. Next, we provide a brief
overview of the formal underpinnings of our framework.

3 BACKGROUND: SUBJECTIVE LOGIC
To formalize engineers’ opinions, we rely on subjective logic.

Subjective logic [33] is an extension of probabilistic logic [1],
in which users can express subjective opinions by quantified pa-
rameters of belief and certainty. Opinions are formed from a belief
component and an uncertainty component. In statistics and eco-
nomics, the uncertainty component of subjective logic is often
called second-order probability [25], and is represented in terms of
a probability density function over first-order probabilities.

Quantifying subjective opinions is an improvement over tradi-
tional logic as it systematically promotes opinions to first-class
citizens. Informed opinions can be early indicators of emerging
knowledge and often, opinions are the only available insights in
engineering. For example, in Sec. 2, verifying the correctness of
the overall design is not feasible, but the joint opinion of engineers
about the utility of the design drives the evolution of requirements.

Formal underpinnings. Given a boolean predicate 𝑥 , a binomial
opinion regarding the truth of 𝑥 is given by 𝜔𝑥 = (𝑏𝑥 , 𝑑𝑥 , 𝑢𝑥 , 𝑎𝑥),
where𝑏𝑥 represents the belief in the truthfulness of 𝑥 ;𝑑𝑥 represents
the disbelief in the truthfulness of 𝑥 ; 𝑢𝑥 quantifies the degree of

epistemic uncertainty or uncommitted belief concerning 𝑥 ; and
𝑎𝑥 represents the base rate, i.e., the prior probability of 𝑥 in the
absence of (dis)belief. For each parameter, 0 ≤ 𝑏𝑥 , 𝑑𝑥 , 𝑢𝑥 , 𝑎𝑥 ≤ 1.
These parameters satisfy the following conditions.

𝑏𝑥 + 𝑑𝑥 +𝑢𝑥 = 1 (1)
𝑃𝑥 = 𝑏𝑥 + 𝑎𝑥𝑢𝑥 . (2)

Equation 2 expresses the projected probability of an opinion, effec-
tively transforming subjective opinions into the probability domain,
where 𝑃(𝑥) is the probability that boolean predicate 𝑥 holds. It is
clear that as uncertainty 𝑢𝑥 increases, projected probability 𝑃𝑥 is
closer to base rate 𝑎𝑥 . In contrast, as uncertainty 𝑢𝑥 decreases, pro-
jected probability 𝑃𝑥 is closer to that of the belief parameter 𝑏𝑥 .
Both Equations 1 and 2 are important invariants that we rely on
throughout the paper, particularly in Sections 4 and 5.

Example. The opinion of the mechanical engineer 𝐸𝑀 about
the appropriateness of the design could be formulated as 𝜔𝑥 =

(0.8, 0.0, 0.2, 0.5), meaning the engineer has a high belief (𝑏𝑥 = 0.8)
that the design should be considered; albeit with some uncertainty
(𝑢𝑥 = 0.2); and since there is no evidence to decide whether the
design useful or not, the base rate is set to 𝑎𝑥 = 0.5. By Equation 2,
this opinion translates to a projected probability of 𝑃𝑥 = 0.9. This
probabilistic value, in turn, is more intuitive for a requirements en-
gineer who needs to decide whether or not to trigger the evolution
of requirements based on the engineer’s opinion.

Fusing opinions. Informed opinions work well at scale. That is, the
more experts that express their opinions, the higher the credibil-
ity of a collective opinion. Collective opinions can be inferred by
semantically sound fusion operators [35]. This is yet another im-
provement of subjective logic over traditional logic and probability
calculus, as these formalisms are not designed to handle different
beliefs about the same statement. A fusion operator is a function
𝑓 ∶ Ω × Ω → Ω that maps a pair of subjective opinions onto a
new, joint subjective opinion. The right operator must be chosen
based on its fit for purpose. A detailed account of fusion operators
is given in Sec. 4.4.

Challenges in employing subjective logic. The high expressive power
comes with added challenges in employing subjective logic, par-
ticularly in controlling its parameters. There are two schools of
thought to address this problem. In permissive techniques, setting
uncertainty and belief-disbelief are deferred to the user [8, 32], and
it is assumed that these parameters will become available at some
point. It is, however, usually not explained when, how, and who has
to set these parameters. Navarrete and Vallecillo [46] have users
provide their opinion as a prior probability, a posterior probabil-
ity, and an uncertainty. Belief and disbelief are derived from the
posterior probability via a mapping from traditional probability as
defined in [33]. In restrictive techniques, users are not asked to pa-
rameterize the framework, and rather, parameters are controlled by
external measures [34, 43]. Unfortunately, this takes away subjec-
tive elements. Margoni and Walkinshaw [43] and Walkinshaw and
Shepperd [59] use statistical evidence to set values, employing sub-
jective logic to analyze empirical studies and experimental results,
respectively. To represent confidence in assurance cases, Duan et al.
[19] posit the use of Baconian probability to simplify the method of
determining uncertainty. Likewise, Jøsang and Bondi [34] suggest

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kyanna Dagenais and Istvan David

EngineerM

EngineerE

Confidence in

(dE, bE)

aM

u

Requirements

Engineer

Distance from

P
(dM, bM)

aE

2
4

3

⟦.⟧

Requirements

mM
D

mE

combined

movement

14s (Small) autonomous

safe

independent

Confidence in Confidence in

1

Confidence in

Figure 2: Overview of the approach with the main steps (vf1 – vf4) and information highlighted: a – base rate (confidence in
engineers); d and b – disbelief and belief (engineers’ confidence in the design); u – uncertainty of engineers’ decisions; P –
probability that requirements need to evolve

using statistical evidence; as well as the use of a questionnaire to
aid users in determining values. Similarly, Cyra and Górski [11]
create an assessment scale that maps to predetermined values for
binomial opinions. In regards to base rate 𝑎𝑥 , some sources opt to
set this value via statistical evidence [34]. Navarrete and Vallecillo
[46] allow users to directly indicate the base rate, and Walkinshaw
and Shepperd [59] assume 𝑎𝑥 = 0.5. Evidently, configuring the
framework of subjective logic is not a trivial task, and systematic
methods are lacking. Our work links parameters of subjective logic
to well-established MDE concepts to aid their configuration.

4 APPROACH
In this section, we present our approach to driving requirements
evolution by expert opinions, and illustrate it through the case in
Sec. 2. To formalize opinions, we leverage subjective logic [33]. As
discussed in Sec. 3, the increased descriptive power of subjective
logic comes at the expense of increased complexity in configuring
its parameters. To overcome this issue, we develop a systematic
approach in which we drive subjective logic by mapping notable
properties of model consistency and correctness [17] onto the pa-
rameters of subjective logic as shown in Tab. 1 and Fig. 2.

Overview. At the end of the process in Fig. 2, the requirements
engineer needs to be presented with a probability regarding the
need for requirements evolution. Achieving this requires four steps.

In step vf1 , the confidence in engineers’ ability to come up with
correct and useful designs is defined. This information captures the
perceived ability of the specific engineer in a class of tasks, e.g., the
ability to judge mechanical designs. We use the base rate parameter
𝑎 of subjective logic to encode this information. It is contextual
information, as it is determined by the company’s or team’s context,
rather than an specific problem at hand. As such, this parameter
should be controlled by someone who can judge the performance
of the engineers, such as a project manager or team lead.

In step vf2 , engineers express their confidence in the correctness
and ability of their design to drive requirements evolution. We use
the (dis)belief parameters 𝑑,𝑏 of subjective logic to capture this
information. This is subjective information, as it depends entirely
on the engineers’ perception of the qualities of their work. As such,
this parameter is controlled directly by the engineer.

In Step vf3 , the distance to requirements is calculated to capture
the uncertainty of engineers’ decisions. This metric acknowledges
that the farther engineers deviate from the requirements during
the design space exploration process, the less certain their judg-
ment might become. In essence, the farther engineers venture into
the design space, the higher the uncertainty of their beliefs. As

Table 1: Separation of concerns and their mapping onto SL

Concern
type

Subjective logic
parameter

Responsible
stakeholder

Derived
from

Contextual base rate (𝑎) PM, team lead Seniority, historical accuracy
Subjective dis/belief (𝑑,𝑏) Engineer Consistency
Objective un/certainty (𝑢) automated Distance from base correctness

explained in Sec. 3, this is the second-order probability of subjec-
tive opinions, which is captured in the uncertainty parameter 𝑢 of
subjective logic. Uncertainty is objective information in our case,
as it depends on a measurable metric. As such, this parameter is
controlled automatically by our framework.

Finally, in Step vf4 , the probability of needing to evolve the re-
quirements is presented to the requirements engineer. To obtain
the projected probability of subjective opinions, we rely on Equa-
tion 2 and present the requirements engineer with the probabilistic
value 𝑃 . If this probability meets a pre-defined threshold 𝑃 > 𝜏 , the
requirements engineer can infer that requirements might need to
evolve, based on the opinions of engineers.

In the remainder of this section, we elaborate on how contextual
(Sec. 4.1), objective (Sec. 4.2), and subjective (Sec. 4.3) components
are derived, and fused into a single probability metric (Sec. 4.4).

4.1 Contextual component: confidence in
engineers

In the first step of the approach (vf1), confidence in the engineers is
calibrated. As shown in Tab. 1, this information is mapped onto base
rate 𝑎, representing prior probability in the absence of (dis)belief.

This contextual information specifies the trust a company or
manager has in the engineers. This information is quantified by the
likelihood that the alternative design proposed by the specific engi-
neer turns out to be correct. The base confidence in an engineer can
be interpreted as the formal encoding of domain expertise attrib-
uted to seniority, or a track record of historical accuracy in driving
requirements evolution. In most cases, there is no clear evidence
to change the prior probability from the default 𝑎 = 0.5. However,
base rate can be calibrated in a more constructive way based on
historical data and appropriate internal assessment procedures.

A good example of calibrating base rates comes from an earlier
industry project in which we collaborated with one of the largest
financial institutions in the country. Our goal was to promote “skill”
to a first-class citizen in agile software engineering to allow rea-
soning about optimal allocations of tasks (with required skills) to
engineers (with possessed skills). The skills of engineers were as-
sessed regularly in a quarterly meeting by their team leader. Base

Driving Requirements Evolution by Engineers’ Opinions MODELS Companion ’24, September 22–27, 2024, Linz, Austria

rate is analogous to this skill level. It can be calibrated manually
(as done in our previous project) or in an automated fashion.

Example 1. Since we have no argument to decide otherwise,
the base rates of both engineers should be calibrated at 𝑎 = 0.5,
representing the situation where no a-priori information is avail-
able about the engineers’ backgrounds. However, for the sake of
demonstration, we assume that electrical engineer 𝐸𝐸 is a junior
professional and mechanical engineer 𝑀𝐸 is a senior with many
years of experience at the company. Thus, we estimate their respec-
tive base rates at 𝑎𝐸𝐸 = 0.2 and 𝑎𝐸𝑀 = 0.6. This means that the
electrical engineer is right in 20% of the cases when the appropri-
ateness of an alternative design has to be judged. (Base rate should
account for domain expertise and, ideally, should be set per skill
group, as explained above. Furthermore, deviation from 𝑎 = 0.5
should be based on clear and consistently repeatable assessments.)

4.2 Subjective component: engineers’
confidence in design by consistency

In the second step of the approach (vf2), the engineers express their
confidence in their design. As shown in Tab. 1, this information is
mapped onto the disbelief 𝑑 and belief 𝑏 parameters of SL, repre-
senting the (dis)belief engineers have in the design at hand.

4.2.1 Consistency as a heuristic to correctness. For a formal defi-
nition of meeting requirements, i.e., having a correct design, we
recall the related definition of David et al. [17, Definition 8]:

Definition 4.1 (Correctness of a design). Design 𝐷 is said to be
correct with respect to its set of required properties 𝑃𝑟𝑒𝑞(𝐷) iff
∀𝑝 ∈ 𝑃𝑟𝑒𝑞(𝐷) ∶ J𝐷K ⊨ 𝑝 , where J.K denotes semantic mapping.

Here, the set of required properties of design 𝐷 is given as
𝑃𝑟𝑒𝑞(𝐷) = ⋃𝑚∈𝐷 𝑃𝑟𝑒𝑞(𝑚), i.e., the required properties of the de-
sign is the set of required properties of its constituent models.
In the running example, 𝑃𝑟𝑒𝑞(𝐷) = safe, autonomous, independent.
The semantic mapping between safe and𝑚𝑀 is given by J𝑚𝑀 K ⊨
(Re{𝜆𝐼} < 0), which can be evaluated through simulation.

When exploring alternative designs, it may not be feasible to
prove correctness. Instead, engineers rely on their opinions about
the correctness of design. As shown by David et al. [17], consistency
is a heuristic to eventual correctness. That is, following the defini-
tion of Romanycia and Pelletier [50], consistency is a device, which
«one is not entirely confident will be useful» in achieving correct-
ness, but which «one has a reason to believe will be useful» in doing
so. Thus, engineers can rely on the consistency of their models to
increase their belief in the eventual correctness of the design.

Example 2. In the running example, the two engineers deviate
from the correct baseline 𝐷1 to find the more optimal 𝐷2. However,
as shown in Fig. 1b, each engineer has access to one property (safety
and autonomy), and proving independence might not be feasible in
their respective views. Instead, engineers rely on the presence of
consistency as they both satisfy their required properties.

4.2.2 Consistency to formulate belief. We adopt the related defini-
tion of David et al. [17, Definition 10] as follows.

Definition 4.2 (Consistency of two models). Models𝑚𝑖 ,𝑚 𝑗 are said
to be consistent w.r.t to property 𝑝 ∈ 𝑃 iff J𝑚𝑖K ⊨ 𝑝 ⇔ J𝑚 𝑗 K ⊨ 𝑝 .

That is, consistency is concerned with whether models make
the same (or congruent) statements about certain properties. In the
trivial case, J𝑚𝑖K ⊨ 𝑝∧J𝑚 𝑗 K ⊨ 𝑝 , i.e., both models satisfy property
𝑝 , and thus, are deemed consistent. However, the definition allows
for the non-trivial case too, in which J𝑚𝑖K ⊭ 𝑝 ∧ J𝑚 𝑗 K ⊭ 𝑝 , i.e.,
the two models are consistent but incorrect.

Def. 4.2 can be used in two ways to influence engineers’ beliefs:
in a binary way and in a quantified way. The rather trivial no-
tion of binary inconsistency informs the engineer whether models
are in a consistent state or not. Models𝑚𝑖 ,𝑚 𝑗 are inconsistent iff
∃𝑝 ∈ 𝑃 ∶ (J𝑚𝑖K ⊨ 𝑝 ∧ J𝑚 𝑗 K ⊭ 𝑝) ∨ (J𝑚𝑖K ⊭ 𝑝 ∧ J𝑚 𝑗 K ⊨ 𝑝).
Binary inconsistency is not exactly useful in aiding engineers in
formulating their belief in the correctness of their approach as con-
sistent cases do not help determine just how confident the engineer
should feel about the design. A more useful notion of inconsistency
is quantified inconsistency [5], aiming to express the degree of
inconsistency between two models. As opposed to the nominal
level of measurement of binary inconsistency (named categories
without order), quantified inconsistency is at least at the interval
level of measurement (distance between values is meaningful). This
richer semantic domain gives engineers a better grip on just how
confident they should be about their design.

Example 3. The number of inconsistent properties is a good
example of a simple consistency quantification metric.

ℎ(𝐷) = ∣(𝑃𝑠𝑎𝑡 (𝑚𝑖)⊖ 𝑃𝑠𝑎𝑡 (𝑚 𝑗))⋂𝑃
′∣, (3)

where ⊖ is symmetric difference; 𝑃 ′
≡ 𝑃𝑟𝑒𝑞(𝑚𝑖) ⋂ 𝑃𝑟𝑒𝑞(𝑚 𝑗) is the

overlap of concerns; and 𝑃𝑠𝑎𝑡 (𝑚) ⊆ 𝑃𝑟𝑒𝑞(𝑚) are satisfied properties.
Calculating this distance assumes that there are (in)consistency

management rules in place that allow for the efficient evaluation
of some properties of interest that form the basis of ℎ. Typically, a
subset of ontological properties is available in the linguistic realm,
i.e., the set of properties 𝑃 in Equation 3 gets substituted by 𝑃ℒ ⊆ 𝑃 .

4.2.3 A language to express opinions. To express engineering opin-
ions, an appropriate language is required. We use Likert-type rating
scales to guide participants in expressing their answers. Likert-type
scales are psychometric rating scales frequently employed in ques-
tionnaires to measure the attitude of participants towards a specific
question [36]. Likert scales narrow the cognitive gap between hu-
man reasoning about confidence and the framework of subjective
logic, and allow humans to express their opinions at a higher level
of abstraction. A similar approach has been used by Jongeling and
Vallecillo [32] to express opinions about model consistency resolu-
tion strategies. Following Vagias [55], we recommend the following
Likert items to gauge confidence: {Not confident at all; Slightly con-
fident; Somewhat confident; Fairly confident; Completely confident}.
We then use an equidistant mapping of the Likert scale onto the
disbelief-belief scale, assigning a 𝑏 value proportionally to the order
of the Likert item. (It is important to re-iterate here that mapping
beliefs to a Likert-scale does not render them objective informa-
tion.) Three example cases are shown in Tab. 2. However, the full
mapping cannot be determined without fixing the uncertainty pa-
rameter 𝑢. In Sec. 4.3, we show how to deal with this last parameter
and provide a full configuration of the SL framework.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kyanna Dagenais and Istvan David

Example 4. In the running example, the engineers explore alter-
native design 𝐷2. They observe that w.r.t. the number of accessible
properties (safety and autonomy), their inconsistency metric ℎ(𝐷2)
evaluates to 0, giving them confidence in their design. Electrical
engineer 𝐸𝐸 has a simpler model and, thus, is Completely confident
in the design, while the relatively more complex mechanical de-
sign makes mechanical engineer 𝐸𝑀 slightly less confident, but
still Fairly confident in the design. By Tab. 2, these choices map to
𝑏𝐸𝐸 = 1.0, 𝑑𝐸𝐸 = 0.0 and 𝑏𝐸𝑀 = 0.75, 𝑑𝐸𝑀 = 0.25. Adding these
values to the choices of 𝑎𝐸𝐸 = 0.2 and 𝑎𝐸𝑀 = 0.6 in Example 1, the
opinions of the engineers are now given by 𝜔𝐸𝐸 = (1.0, 0.0, 𝑢, 0.2)
and 𝜔𝐸𝑀 = (0.75, 0.25, 𝑢, 0.6). However, without setting 𝑢, belief
and disbelief values 𝑏 and 𝑑 are not precise. In the following, we
derive the missing 𝑢 value to fully configure 𝜔𝐸𝐸 and 𝜔𝐸𝑀 .

4.3 Objective component: engineers’ certainty
in their opinions by model distance

In the third step of the approach (vf3), the previous subjective opin-
ions are augmented with an objective certainty metric, the distance
of the design from the requirements. As shown in Tab. 1, this in-
formation is mapped onto the uncertainty 𝑢 parameter of SL, rep-
resenting the uncertainty that the engineers can properly judge
their designs. As engineers deviate from the correct base model
and leave an increasing number of required properties unsatisfied,
we interpret their certainty as lower. Thus, we need a measure to
assess the distance between the design and requirements.

4.3.1 Measuring distance. We rely on the following definition [14].

Definition 4.3. (Measure) A given set of values M with opera-
tions 0 ∶→ M,+ ∶ M × M → M (0 neutral, + associative and
commutative) and an order relation ≤ onM is called a measure.

Def. 4.3 is a common definition of measure, and property count-
ing as shown in Equation 3, meets this definition. Thus, to measure
the distance between requirements and design, we rely on counting
the ratio of satisfied and required properties in design 𝐷 . More pre-
cisely, to map the distance between requirements and design onto
the uncertainty value 𝑢 of SL, we normalize it to the 0 ≤ 𝑢 ≤ 1 do-
main, where 0 represents situations when the design satisfies every
required property, and 1 represents situations when the design does
not meet any properties. The normalized distance of design 𝐷 from
the requirements is defined as ℎ∗(𝐷) = 1 − (∣𝑃𝑠𝑎𝑡 (𝐷)∣/∣𝑃𝑟𝑒𝑞(𝐷)∣).
4.3.2 Full configuration of the SL framework. Now that the 𝑢 pa-
rameter can be calibrated, we revisit Sec. 4.2 and obtain the full
configuration of the subjective logic framework for our case. Given
0 ≤ 𝑢 ≤ 1, the remainder of opinion weights has to be distributed
between 𝑏 and 𝑑 in accordance with Equation 1. The calculation
method of belief 𝑏 and disbelief 𝑑 for the 𝑖th Likert item in an
𝑛-point Likert scale, in ascending order of confidence from least
to most confident, are given by 𝑏𝑖 = 𝑖 × 1−𝑢

𝑛−1 , and symmetrically,
𝑑𝑖 = (1 − 𝑢) − 𝑏𝑖 . Three example mappings are shown in Tab. 2.

Example 5. In the running example, the alternative design𝐷2 has
two proven required properties: safety and autonomy; but engineers
cannot verify independence from their own domain-specific views,
as proving this property requires building a prototype and testing
it on customer-defined scenarios. Thus, the ratio of satisfied and

Table 2: Example mappings of confidence levels onto the
belief dimension of SL at different degrees of uncertainty 𝑢

Likert item u=0.0 u=0.2 u=0.667

b d b d b d

Not confident at all 0.00 1.00 0.0 0.8 0.000 0.333
Slightly confident 0.25 0.75 0.2 0.6 0.083 0.250
Somewhat confident 0.50 0.50 0.4 0.4 0.167 0.167
Fairly confident 0.75 0.25 0.6 0.2 0.250 0.083
Completely confident 1.00 0.00 0.8 0.0 0.333 0.000

required properties is ℎ∗(𝐷2) = 2
3 , which is the 𝑢 parameter in the

SL framework underpinning our approach. Thus, 𝑢 = 0.667. This
case is shown in the third column of Tab. 2, resulting in the following
mappings of Likert items to SL parameters: Fairly confident → 𝑏 =

0.250, and Completely confident → 𝑏 = 0.333. As seen here, belief
and disbelief are discounted by uncertainty. The values in Example
4 𝑏𝐸𝐸 = 1.0, 𝑑𝐸𝐸 = 0.0 and 𝑏𝐸𝑀 = 0.75, 𝑑𝐸𝑀 = 0.25 are discounted
to 𝑏𝐸𝐸 = 0.333, 𝑑𝐸𝐸 = 0.0 and 𝑏𝐸𝑀 = 0.250, 𝑑𝐸𝑀 = 0.083. The
new values round out the running example as follows: 𝜔𝐸𝐸 =

(0.333, 0.0, 0.667, 0.2) and 𝜔𝐸𝑀 = (0.250, 0.083, 0.667, 0.6).

4.4 Putting it all together: fusing belief and
presenting probabilistic evidence

Finally, in the last step of the approach (vf4), all the previous contex-
tual, subjective, and objective information is combined, translated
into a probabilistic value 𝑃 = 𝑏 + 𝑎𝑢 (Equation 2), and presented
to the requirements engineer. The engineer then compares this
probabilistic value to a previously chosen threshold 𝜏 . In case of
𝑃 > 𝜏 , the requirements engineer decides to initiate the evolution
of requirements; otherwise (𝑃 ≤ 𝜏), evolution is rejected on account
of low confidence in the alternative design.

Combined (joined) opinions are obtained through fusing sin-
gle opinions. The seminal work of Jøsang [33] defines an array
of fusion operators and classifies them according to situational
characteristics to facilitate the selection of the most appropriate
operator. Here, we rely on Belief Constraint Fusion (BCF), but other
fusion operators can be used as well. BCF is an appropriate choice
when agents have already made up their minds and will not seek
compromise. Since the engineers formulate their opinions about
the design independently from each other, it is fair to assume that
engineers will, indeed, not seek compromise. Reasoning through
domain-specific views also hinders seeking compromise.

A fused opinion 𝜔
⊙

= (𝑏⊙, 𝑑⊙, 𝑢⊙, 𝑎⊙) is calculated from the
overlapping beliefs (called harmony) and non-overlapping beliefs
(conflict) of individual opinions. Harmony = 𝑏1𝑢2 + 𝑏2𝑢1 + 𝑏1𝑏2,
which, given that in our approach𝑢 = 𝑢1 = 𝑢2, simplifies as follows.

Harmony = (𝑏1 + 𝑏2)𝑢 + 𝑏1𝑏2; (4)
Conflict = 𝑏1𝑑2 + 𝑏2𝑑1 . (5)

The parameters of joint opinion 𝜔
⊙ are calculated as follows.

𝑏
⊙
=

Harmony
(1 − Conflict) ; 𝑑⊙

= 1 − (𝑏⊙ +𝑢
⊙); (6)

𝑢
⊙
=

𝑢1𝑢2
(1 − Conflict) =

𝑢
2

(1 − Conflict) ; (7)

𝑎
⊙
=

𝑎1(1 −𝑢1) + 𝑎2(1 −𝑢2)
2 −𝑢1 −𝑢2

=
(𝑎1 + 𝑎2)(1 −𝑢)

2(1 −𝑢) =
𝑎1 + 𝑎2

2 (8)

Driving Requirements Evolution by Engineers’ Opinions MODELS Companion ’24, September 22–27, 2024, Linz, Austria

5 EVALUATION: (WHY) DOES THIS WORK?
Our approach works because it guarantees safety and liveness prop-
erties along the engineering endeavor. By Lamport [38], safety
stipulates that “bad things” will not happen, and liveness stipulates
that “good things” will eventually happen as the engineers collabo-
rate. Such beneficial situations, coupled with the safety guarantees,
eventually justify employing our approach.

5.1 Safety properties
5.1.1 Uncertain situations never overestimate confidence in engi-
neers. It is expected that in uncertain situations, i.e., in case of
vacuous opinions [33] when 𝑢 ≈ 1, the requirements engineer is
not informed with a higher overall probability for change 𝑃 than
the base confidence in engineers. That is, lim𝑢→1 𝑃 = 𝑎, where 𝑎
denotes the average base rate assigned to the engineers.

The proof is trivial. From Equation 1, it follows that𝑢 = 1 ⇒ 𝑏+
𝑑 = 0, that is𝑢 = 1 ⇒ 𝑏 = 𝑑 = 0. Substituting these into 𝑃 = 𝑏+𝑎𝑢

(Equation 2), we get 𝑃𝑥 (𝑥∣𝑢 = 1) = 𝑎. That is, the requirements
engineer will never be informed about a higher probability to trigger
requirements evolution than their base confidence in an engineer
to signal a true positive need for requirements change.

To generalize to more than one engineer, consider an aggregation
function to obtain 𝑎 from the set of base rates 𝐴 = {𝑎𝑛∣𝑛 ∈ N}.
For example, BCF obtains the fused base rate by arithmetic mean
(Sec. 4.4). This means, the requirements engineer is never informed
about a higher probability of required evolution than the mean base
confidence 𝑎 in engineers.

5.1.2 Most incorrect designs are not proposed to the requirements
engineer. This is a weak safety property as it does not hold for
each case, but it holds for reasonable cases. As explained in Sec. 4,
consistency of design 𝐷 is a prerequisite to proposing it to the
requirements engineer. Thus, inconsistent designs are surely not
proposed. Unfortunately, consistency is a necessary but not suffi-
cient requirement for correctness [17, Theorem 1]. This is a problem
in situations when engineers have consistent models, but models
are consistently incorrect, e.g., due to working under wrong assump-
tions or choosing the wrong frame of validity [45]. In such rare
edge cases, engineers might have a high confidence in an incor-
rect design, and requirements engineers together with stakeholder
clients must be able to identify such designs.

5.2 Liveness properties
5.2.1 Even novice experts can drive requirements evolution. The
base rate is calibrated by assessing the experience of experts, ap-
proximating or deriving the likelihood of their input being valid
and useful. Liveness, in this setup, means that for any base rate,
even for a low one (𝑎 ≈ 0), there exists a certainty-belief configu-
ration that will meet an arbitrary threshold 𝜏 that will trigger the
evolution of requirements. Formally, ∀𝑎 ∶ 0 ≤ 𝑎 ≤ 1, ∃𝑢 ∶ 0 ≤ 𝑢 ≤

1 ∶ 𝑃 > 𝜏 , where 𝜏 is the chosen threshold to initiate the require-
ments evolution process. The proof, again, is trivial, considering
that 𝑃 = 𝑏 + 𝑎𝑢, from which, in the worst case of 𝑎 = 0, it follows
that 𝑃𝑥 (𝑥∣𝑎 = 0) = 𝑏𝑥 . Given that 1 = 𝑏 + 𝑑 + 𝑢, it follows that
𝑢 + 𝑑 < 𝜏 ⇒ 𝑏 > 1 − 𝜏 ⇒ 𝑃 > 𝜏 .

5.2.2 Requirements can evolve even at high acceptance thresholds.
This means companies can opt for safe settings by choosing a
comfortably high 𝜏 that will necessitate high belief and certainty to
trigger the evolution of requirements; and gradually shift towards
more permissive configurations with a lower 𝜏 . For proof, consider
𝜏 = 1, i.e., requirements evolution requires a probability of 1. From
𝑃 = 𝑏 + 𝑎𝑢, it follows that 1 = 𝑏 + 𝑎𝑢; and considering Equation 1,
it follows that 𝑏 + 𝑑 + 𝑢 = 𝑏 + 𝑎𝑢, simplifying to 𝑑 + 𝑢 = 𝑎𝑢. After
organizing the equation, we get 𝑑

𝑢
= 𝑎 − 1. Since 0 ≤ 𝑑,𝑢 ≤ 1, it

follows that 0 ≤
𝑑
𝑢
, necessitating 0 ≤ 𝑎 − 1, but due to 0 ≤ 𝑎 ≤ 1, it

follows that 𝑎 − 1 = 0, and 𝑑
𝑢
= 0 holds. Consequently, 𝑑 = 0.

That is, meeting evolution trigger threshold 𝜏 = 1 is still attain-
able with 𝑎 = 1 and 𝑑 = 0, i.e., with an expert whose input is always
considered as long as they express no disbelief. As a corollary, it
follows that the degree of certainty is irrelevant in this case. This
is the profile of senior architects who often have an unquestioned
role in the management of requirements and whose indication of
inaccurate requirements is taken at face value.

6 DISCUSSION
We now discuss the key takeaways and outline some challenges
and research opportunities for prospective researchers.

6.1 More agile requirements engineering
The most important takeaway of this paper is that opinions can
be effective driving factors to requirements evolution. Opinions
are formed more easily and faster than knowledge and hard evi-
dence, and as demonstrated, when formally informed, engineering
opinions can be of high utility in steering projects toward higher
value-added results. Basing formal reasoning on opinions allows for
leveraging early indications of new knowledge, and by channeling
the intuitions of engineers into quantified metrics, evolutionary
needs can be intercepted as early as possible.

The separation of concerns renders the decision whether to initi-
ate evolution a truly collaborative endeavor, in which objective,
subjective, and contextual information can be considered in their
most appropriate form, thanks to subjective logic. The collective
and collaborative setting around the engineering problem suggests
a diverse set of viewpoints to render opinions relevant at scale.

Our approach fosters more agile requirements management
by allowing engineers to explore the design space freely while
working under proven safety guarantees (Sec. 5.1). The liveness
properties of our approach (Sec. 5.2) suggest that promising re-
sults of exploration will be considered irrespective of the engineers’
seniority or the risk-aversion of the company. These safety and live-
ness properties should motivate companies to adopt our approach.

Agile requirements management mechanisms, such as the one
presented in this paper, are of particularly high value in settings
without a properly codified problem space and new problem do-
mains. When engineers have to address complex problems in new
domains, a shared cognitive model with the client stakehold-
ers is particularly challenging to establish. Extensive socializa-
tion [47]—e.g., working in a master-apprentice setup or observing
practitioners—is a well-known technique to handle such cases, al-
lowing for customers and engineers to tap into each other’s exper-
tise and chain of thought. However, socialization is not something

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kyanna Dagenais and Istvan David

software and systems projects can typically afford. Our approach
facilitates convergence towards shared cognitive models by basing
its formal frameworks on opinions rather than hard evidence.

6.2 Systematic methods to subjective logic
through sound MDE concepts

Subjective logic promotes uncertainty to a first-class citizen in-
stead of forcing unnatural codification of truly human faculties and
attitudes such as belief and opinions. Thus, subjective logic is an im-
portant improvement over logic frameworks typically encountered
in MDE-related problems, such as first-order logic in consistency
management [17], description logic in ontological reasoning [56],
and modal logic in knowledge base evolution [57].

Unfortunately, the added modeling power comes at the cost
of particularly cumbersome deployment and calibration of
subjective logic. In Sec. 3, we elaborated on the restrictions and
simplifications state-of-the-art approaches resort to in order to
manage the complexity of subjective logic.

Our approach leverages the full power of subjective logic by
separating its parameters into subjective, objective, and contextual
concerns and establishing strong links with core MDE concepts,
such as consistency and correctness. We recognize that controlling
each parameter is not feasible for the end-user due to the immense
cognitive load. Answering the simple questions of “what is your
belief about X?” and “what is your certainty about your belief?” is
confusing and challenging. Even the developers of subjective logic
resort to higher-level DSLs to hide details of the framework and
elevate the articulation of opinions to human levels [34, Sec. 5.2.1].

Subjective logic offers opportunities for high levels of automa-
tion. For example, engineers can be assisted in articulating their
opinions by appropriate default belief-disbelief values through au-
tomated consistency assessment and reporting. A complete, easily
accessible, and queryable history of engineer decisions would be a
key feature to gauge the base rate of engineers in an objective way.
History should be captured in a semi-formal fashion, e.g., using
decision graphs [51] that are amenable to automated analysis.

6.3 Caveats and limitations
Themain caveat of our approach is being limited to the development
side (including engineers and stakeholders) and not integrating
client beliefs into the reasoning process. We acknowledge the
potential high benefits of modeling client beliefs in a truly end-to-
end framework. However, assessing confidence in the client might
pose challenges that are outside of an engineering company’s reach.
For example, asserting a base rate to client stakeholders might not
be feasible. Furthermore, we are not aware of heuristics that could
drive client belief in the systematic way model consistency drives
engineers’ beliefs.

Another caveat is related to the second, weak safety guaran-
tee (Sec. 5). While most incorrect designs are not proposed to the
requirements engineer, it is possible that some incorrect designs
will be proposed. The inconsistency of the design will indicate sure
inconsistency, and thus, we can safely handle such cases. How-
ever, consistent cases can still lead to incorrect designs. The safe
handling of these situations requires human intelligence in require-
ments management and on the client side.

Finally, the selection of the fusion operator (Sec. 4.4) is a chal-
lenge in employing subjective logic [35]. However, in most cases,
the differences between fusion operators is negligible compared
to other factors in our approach, e.g., quantifying consistency and
measuring the distance between design and requirements.

6.4 Challenges and research opportunities
Some notable challenges and opportunities for prospective researchers
and developers are the following.

Efficient semantic techniques and tools are required to be
researched in support of the outlined approach. Ontological rea-
soning has demonstrated benefits in heterogeneous settings in
which stakeholders of disparate domains are involved, and com-
mon vocabularies are lacking [58]. The need for ontology-based
requirements management techniques has been recognized before,
e.g., in mechatronics [15]. However, to get there, integration of
semantic techniques with the prevailing linguistic approaches is
required [6]—but this remains an open challenge.

To allow for externalizing engineers’ opinions, suitable lan-
guages are required. In our work, we resorted to Likert scales
as they are designed to elicit human attitudes toward statements
about phenomena of interest–opinions, basically. A similar tech-
nique was chosen by Jongeling and Vallecillo [32] in their subjective
logic-based inconsistency management approach and by Jøsang
and Bondi [34] in their approach for legal reasoning. We see oppor-
tunities in supporting our technique by domain-specific languages
(DSL) [44], especially in blended fashion [4] with engineering mod-
eling languages to further streamline the engineering process.

To accelerate the engineering and requirements evolution pro-
cess, automated derivation ofmeaningful belief defaults could
be developed. Our approach establishes a link between model con-
sistency and belief, which could be further improved by informing
the engineer about an approximate belief value. Alternatively, fully
automated virtual experts could be developed who represent the
fully synthetic belief in a project and could be treated as additional
project members when it comes to driving requirements evolution.

On a related note, a method and tooling for calibrating and
maintaining the base rate is required before our approach is
deployed in real settings. In our experience from an industry project,
regular individual assessments of engineers’ base rates are a good
first step that will establish methodological clarity. In the long run,
however, proper automation and tooling are required to mitigate
threats to validity in the assessment of human capabilities and skills.
Structured design rationale techniques are prime candidates to
provide the foundation for automated quantified assessment. Such
directions have been explored by Salay et al. [51] who augment
requirements models with rationale to reduce uncertainty. Design
rationale has been used previously in other steps of the model-
driven engineering process, e.g., to augment design decisions [48],
goal models [42], and requirement models [26].

Finally, as a key software development challenge, efficient end-
to-end tool support is required. A brief review of the seminal work
of Hoffmann et al. [30] on the requirements for requirements man-
agement tools reveals that requirements engineering tools might
provide appropriate foundations for the envisioned tool support,

Driving Requirements Evolution by Engineers’ Opinions MODELS Companion ’24, September 22–27, 2024, Linz, Austria

but key features might be missing. Most notably, quantified incon-
sistency reporting could be developed to inform engineers about
the degree of inconsistency in design and form a basis for informed
opinions. As demonstrated in Sec. 4.2.2, quantified (in)consistency
is an appropriate formal underpinning to formulating engineering
opinions. Thus, lightweight mechanisms that maintain and report
metrics of inconsistency are of particularly high utility. Such av-
enues have been explored both in the ontological [41], and linguistic
realm [39], but appropriate tool support is yet to be developed.

7 RELATEDWORK
Requirements in software and systems engineering are inherently
uncertain and, some claim, are never complete [49]. To converge
to sufficiently detailed requirements, systematic evolution mecha-
nisms Ernst et al. [21], Joshi and Summers [37] are needed.

Uncertainty in requirements. Uncertainty is typically due to vague
product strategy, missing key stakeholders, and missing or unavail-
able domain knowledge [20]. Salay et al. [51] promote uncertainty in
requirements to a first-class citizen by using partial models. Partial
models allow for accounting for missing or incomplete information
in requirements. Partiality is expressed through four kinds of uncer-
tainty annotations: the presence of a particular model element in a
model; the number of model elements in the model; the distinctness
of model elements; and the completeness of the model. As opposed
to our approach, partial models focus on structural deficiencies of
models; and the formalization of the modeler’s belief requires a
good understanding of the domain, e.g., of what may be missing
from themodel. Our approach, therefore, fosters a more streamlined
articulation of engineers’ belief and that, in a quantified fashion.

Involving stakeholders and triggering creativity to drive innovation.
A particular need that contributes to uncertainty in requirements
is the need for innovation during the engineering endeavor [2].
Much effort has been dedicated to involving client stakeholders and
tapping to their creativity. Herrmann [29] defines a methodological
approach, called the Socio-Technical Walkthrough, to take the mul-
titude of aspects around customer needs into consideration and to
make them the subject of communication and negotiation. Unfortu-
nately, such informal methods do not scale well, are costly, and often
require expert guidance. To such limitations of workshop-style re-
quirements elicitation, Horkoff and Maiden [31] introduce methods
to stimulate creativity and capture creative output in a structured
form which might be better amenable to automated analysis and
later development. Burnay et al. [9] define creativity triggers for
requirements elicitation. Creativity triggers aid stakeholders and
engineers to discover new requirements associated with qualities
and traits of a product, such as convenience and completeness. In
a recent work, Fariha et al. [23] propose a stakeholder collabora-
tion platform with a proactive recommendation model to further
automate the elicitation of requirements and reduce the economic,
time, and geographical pressures that are required for traditional
requirements elicitation workshops [31].

Our approach focuses on better involving engineers in the re-
quirements shaping process, and giving them the freedom to be
creative by promoting opinions and intuitions developed through
exploration to first-class citizens. Nevertheless, the above methods

could complement to our work, potentially involving client-side
technical experts into the requirements formulation process.

Requirements evolution. A substantial body of knowledge has been
dedicated to supporting the incorporation of emerging new knowl-
edge in requirements by their evolution [21]. For example, Grubb
and Chechik [27] link stakeholder intentions with technical re-
quirements through goal models [3], and use what-if simulations to
determine the impact of requirement change. Approaches that sys-
tematically evaluate the impact of requirements evolution are useful
complements to our approach, e.g., to explore the least intrusive evo-
lution path that aligns with the alternative design recommended by
the engineers. Appropriate semantics have been developed in [28].

Formal codification of requirements in an effort to render them
more amenable to automated reasoning has been a research area
of particular interest. For example, DeVries and Cheng [18] detect
incomplete requirements decompositions using symbolic analysis
of hierarchical requirements models at design time. Chechik and
Gannon [10] provide a framework for lightweight assessment of
consistency between requirements and detailed design using the
SCR specification language. To deal with informal requirements,
Li et al. [40] transform them to formal ones, and subsequently, to
software specifications. An ontology of requirements and a for-
mal requirements modeling language support the representation
of functional and extra-functional requirements, which are later
refined using a set of semantically sound refinement operators.

Our approach focuses on human faculties and the formalization
of subjective opinions, to potentially channel into such methods.
By that, our approach eliminates the need for some inconvenient
assumptions of formalization-focused requirements methods, e.g.,
the feasibility of expressing requirements by formal notation, which
is certainly challenged by the presence of non-technical experts.

8 CONCLUSION
In this paper, we presented an approach to drive requirements evo-
lution by expert knowledge that might deviate from requirements.
Our approach relies on the quantified confidence of engineers in
their own design, thereby indicating to the requirements engineer
when it is likely that requirements must be re-assessed. We chose
subjective logic as the sound formal underpinning of our approach
and separated its key parameters into contextual, subject, and ob-
jective MDE concerns, such as model consistency and correctness.
Leveraging some well-known theorems from model-driven engi-
neering, we make a link between engineers’ beliefs and model
consistency; and additional links with model correctness and the
certainty of engineers’ opinions.

Our approach fosters more agile requirements evolution prac-
tices by tapping into engineering knowledge, shortening the loop of
noticing the need for evolution, and providing requirements engi-
neers with tangible alternative designs to propose to stakeholders.

REFERENCES
[1] Ernest Wilcox Adams. 1996. A Primer of Probability Logic. Center for the Study

of Language and Inf.
[2] Lars Almefelt, Fredrik Berglund, Patrik Nilsson, and Johan Malmqvist. 2006.

Requirements management in practice: findings from an empirical study in the
automotive industry. Research in Engineering Design 17, 3 (2006), 113–134.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Kyanna Dagenais and Istvan David

[3] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam
Peyton, and Eric Yu. 2010. Evaluating goal models within the goal-oriented
requirement language. Int J Intell Syst 25, 8 (2010), 841–877.

[4] Muhammad Waseem Anwar, Federico Ciccozzi, and Alessio Bucaioni. 2023. En-
abling Blended Modelling of Timing and Variability in EAST-ADL. In Proc. of the
ACM Intl. Conf. on Software Language Engineering (SLE 2023). ACM, 169–180.

[5] B Barragáns-Martínez, JJ Pazos-Arias, and A Fernández-Vilas. 2004. Onmeasuring
levels of inconsistency in multi-perspective requirements specifications. In Proc.
of the 1st Conf. on the Principles of Software Engineering (PRISE’04). 21–30.

[6] Bruno Barroca, Thomas Kühne, and Hans Vangheluwe. 2014. Integrating Lan-
guage and Ontology Engineering. In Proc. of the 8th Workshop on Multi-Paradigm
Modeling (CEUR Workshop Proceedings, Vol. 1237). CEUR-WS.org, 77–86.

[7] B.W. Boehm. 1991. Software risk management: principles and practices. IEEE
Software 8, 1 (1991), 32–41. https://doi.org/10.1109/52.62930

[8] Lola Burgueño, Paula Muñoz, Robert Clarisó, Jordi Cabot, Sébastien Gérard, and
Antonio Vallecillo. 2023. Dealing with Belief Uncertainty in Domain Models.
ACM Trans. Softw. Eng. Methodol. 32, 2 (2023). https://doi.org/10.1145/3542947

[9] Corentin Burnay, Jennifer Horkoff, and Neil Maiden. 2016. Stimulating Stake-
holders’ Imagination: New Creativity Triggers for Eliciting Novel Requirements.
In 2016 IEEE 24th International Requirements Engineering Conference (RE). 36–45.

[10] M. Chechik and J. Gannon. 2001. Automatic analysis of consistency between
requirements and designs. IEEE Trans. on Soft. Eng. 27, 7 (2001), 651–672.

[11] Lukasz Cyra and Janusz Górski. 2008. Expert assessment of arguments: A method
and its experimental evaluation. In Computer Safety, Reliability, and Security: 27th
International Conference, SAFECOMP 2008. Springer, 291–304.

[12] Kyanna Dagenais. 2024. Towards Model Repair by Human Opinion-Guided
Reinforcement Learning. In Proceedings of the 27th International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings. ACM.

[13] Kyanna Dagenais and Istvan David. 2024. Opinion-Guided Reinforcement Learn-
ing. arXiv:2405.17287

[14] Istvan David et al. 2016. Towards Inconsistency Tolerance by Quantification
of Semantic Inconsistencies. In Proceedings of the 1st International Workshop on
Collaborative Modelling in MDE, Vol. 1717. CEUR-WS.org, 35–44.

[15] Istvan David, Joachim Denil, Klaas Gadeyne, and Hans Vangheluwe. 2016. Engi-
neering Process Transformation to Manage (In)consistency. In Proc. of the 1st Intl.
Workshop on Collaborative Modelling in MDE, Vol. 1717. CEUR-WS.org, 7–16.

[16] Istvan David, Bart Meyers, Ken Vanherpen, Yentl Van Tendeloo, Kristof Berx, and
Hans Vangheluwe. 2017. Modeling and Enactment Support for Early Detection of
Inconsistencies in Engineering Processes. In Proceedings of MODELS 2017 Satellite
Event (CEUR Workshop Proceedings, Vol. 2019). CEUR-WS.org, 145–154.

[17] Istvan David, Hans Vangheluwe, and Eugene Syriani. 2023. Model consistency
as a heuristic for eventual correctness. Journal of Comp. Lang. 76 (2023), 101223.
https://doi.org/10.1016/j.cola.2023.101223

[18] Byron DeVries and Betty H. C. Cheng. 2016. Automatic detection of incomplete
requirements via symbolic analysis. In Proc. of the ACM/IEEE 19th Intl. Conf. on
Model Driven Engineering Languages and Systems (MODELS’16). ACM, 385–395.

[19] Lian Duan, Sanjai Rayadurgam, Mats Heimdahl, Oleg Sokolsky, and Insup Lee.
2016. Representation of Confidence in Assurance Cases Using the Beta Distribu-
tion. In IEEE 17th Intl. Symp. on High Assurance Systems Engineering. 86–93.

[20] Christof Ebert and Jozef De Man. 2005. requirements uncertainty: influenc-
ing factors and concrete improvements. In Proceedings of the 27th International
Conference on Software Engineering. ACM, 553–560.

[21] Neil Ernst, Alexander Borgida, Ivan J. Jureta, and John Mylopoulos. 2014. An
Overview of Requirements Evolution. Springer, 3–32.

[22] Kweku Ewusi-Mensah. 2003. Software development failures. MIT Press.
[23] Asma Fariha, Sanaa Alwidian, and Akramul Azim. 2023. Towards Requirements

Specification Collaboration Forum for Embedded Software Systems. In ACM/IEEE
Intl. Conf. on Model Driven Eng. Lang. and Sys. Companion (MODELS-C). 312–317.

[24] D. Méndez Fernández et al. 2017. Naming the pain in requirements engineering.
Empirical Software Engineering 22, 5 (2017), 2298–2338.

[25] P. Gardenfors and N.-E. Sahlin. 2005. Unreliable Probabilities, Risk Taking, and
Decision Making. Springer, 11–29.

[26] Fabian Gilson and Vincent Englebert. 2011. Rationale, decisions and alternatives
traceability for architecture design. In Proceedings of the 5th European Conference
on Software Architecture: Companion Volume (ECSA ’11). ACM.

[27] Alicia M. Grubb and Marsha Chechik. 2016. Looking into the Crystal Ball:
Requirements Evolution over Time. In 2016 IEEE 24th International Requirements
Engineering Conference (RE). 86–95. https://doi.org/10.1109/RE.2016.45

[28] Alicia M. Grubb and Marsha Chechik. 2018. BloomingLeaf: A Formal Tool for
Requirements Evolution Over Time. In 2018 IEEE 26th International Requirements
Engineering Conference (RE). 490–491. https://doi.org/10.1109/RE.2018.00067

[29] Thomas Herrmann. 2009. Systems Design with the Socio-Technical Walkthrough.
IGI Global, 336–351. https://doi.org/10.4018/978-1-60566-264-0.ch023

[30] M. Hoffmann, N. Kuhn, M. Weber, and M. Bittner. 2004. Requirements for
requirements management tools. In Intl. Requirements Eng. Conf., 2004. 301–308.

[31] J. Horkoff and N. Maiden. 2015. Creativity and conceptual modeling for require-
ments engineering. CEUR Workshop Proceedings 1342 (2015), 62–68.

[32] Robbert Jongeling and Antonio Vallecillo. 2023. Uncertainty-aware consistency
checking in industrial settings. In 2023 ACM/IEEE 26th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 73–83.

[33] Audun Jøsang. 2016. Subjective Logic. Springer.
[34] Audun Jøsang and Viggo A. Bondi. 2000. Legal reasoning with subjective logic.

AI and Law 8, 4 (2000), 289–315.
[35] Audun Jøsang, Paulo C.G. Costa, and Erik Blasch. 2013. Determining model

correctness for situations of belief fusion. In Proceedings of the 16th International
Conference on Information Fusion. 1886–1893.

[36] Ankur Joshi et al. 2015. Likert scale: Explored and explained. British Journal of
Applied Science & Technology 7, 4 (2015), 396.

[37] Shraddha Joshi and Joshua D. Summers. 2015. Requirements Evolution: Under-
standing the Type of Changes in the Requirement Document of Novice Designers.
In ICoRD’15 – Research into Design Across Boundaries Volume 2. Springer, 471–481.

[38] Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering SE-3, 2 (1977), 125–143.

[39] C. Lange, M. R. V. Chaudron, J. Muskens, L. J. Somers, and H. M. Dortmans. 2003.
An empirical investigation in quantifying inconsistency and incompleteness of
UML designs. In Incompleteness of UML Designs, Proc. Workshop on Consistency
Problems in UML-based Software Development.

[40] Feng-Lin Li et al. 2015. From Stakeholder Requirements to Formal Specifica-
tions Through Refinement. In Requirements Engineering: Foundation for Software
Quality. Springer, 164–180.

[41] Yue Ma, Guilin Qi, Pascal Hitzler, and Zuoquan Lin. 2007. Measuring Inconsis-
tency for Description Logics Based on Paraconsistent Semantics. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty. Springer, 30–41.

[42] Neil Maiden, James Lockerbie, Debbie Randall, Sean Jones, and David Bush.
2007. Using Satisfaction Arguments to Enhance i∗Modelling of an Air Traffic
Management System. In 15th IEEE Intl. Requirements Engineering Conf. 49–52.

[43] Francesco Margoni and Neil Walkinshaw. 2023. Subjective Logic as a Complemen-
tary Tool to Meta-Analysis to Transparently Address Second-Order Uncertainty
in Research Findings. (2023).

[44] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to
develop domain-specific languages. ACM Comput. Surv. 37, 4 (2005), 316–344.

[45] Rakshit Mittal, Raheleh Eslampanah, Lucas Lima, Hans Vangheluwe, and Do-
minique Blouin. 2023. Towards an Ontological Framework for Validity Frames. In
ACM/IEEE Intl. Conf. on Model Driven Eng. Lang. and Sys. Companion. 801–805.

[46] Francisco J Navarrete and Antonio Vallecillo. 2021. Introducing subjective knowl-
edge graphs. In 2021 IEEE 25th International Enterprise Distributed Object Com-
puting Conference (EDOC). IEEE, 61–70.

[47] Ikujirō Nonaka and Hirotaka Takeuchi. 2007. The knowledge-creating company.
Harvard Business Review 85, 7/8 (2007), 162.

[48] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product Line
Engineering. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-28901-1

[49] Paul Ralph. 2013. The illusion of requirements in software development. Require-
ments Engineering 18, 3 (2013), 293–296.

[50] Marc HJ Romanycia and Francis Jeffry Pelletier. 1985. What is a heuristic?
Computational Intelligence 1, 1 (1985), 47–58.

[51] Rick Salay et al. 2013. Managing requirements uncertainty with partial models.
Requirements Engineering 18, 2 (2013), 107–128.

[52] Douglas C Schmidt. 2006. Model-driven engineering. Computer 39, 2 (2006), 25.
[53] S Sedhumadhavan and E Niranjana. 2017. An Analysis of Path Planning for

Autonomous Motorized Robots. International Journal of Advance Research, Ideas
and Innovations in Technology 3, 6 (2017), 1234–1257.

[54] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021.
Uncertainty representation in software models: a survey. Soft. Sys. Mod. 20, 4
(2021), 1183–1213.

[55] Wade M Vagias. 2006. Likert-type scale response anchors. Clemson International
Institute for Tourism & Research Development, Department of Parks, Recreation
and Tourism Management. Clemson University (2006).

[56] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers.
2003. Using Description Logic to Maintain Consistency between UML Mod-
els. In «UML» 2003 - The Unified Modeling Language, Modeling Languages and
Applications, 6th International Conference (LNCS, Vol. 2863). Springer, 326–340.

[57] Hans Van Ditmarsch, Wiebe van der Hoek, Joseph Y Halpern, and Barteld Kooi.
2015. Handbook of epistemic logic. College Publications.

[58] Ken Vanherpen, Joachim Denil, Istvan David, Paul De Meulenaere, Pieter J.
Mosterman, Martin Torngren, Ahsan Qamar, and Hans Vangheluwe. 2016. On-
tological reasoning for consistency in the design of cyber-physical systems. In
2016 1st International Workshop on Cyber-Physical Production Systems. IEEE, 1–8.
https://doi.org/10.1109/CPPS.2016.7483922

[59] Neil Walkinshaw and Martin Shepperd. 2020. Reasoning about Uncertainty in
Empirical Results. In Proceedings of the 24th International Conference on Evaluation
and Assessment in Software Engineering (EASE ’20). ACM, 140–149.

[60] Matthias Weber and Joachim Weisbrod. 2002. Requirements engineering in
automotive development-experiences and challenges. In Proc. IEEE Joint Intl.
Conf. on Requirements Engineering. 331–340.

https://doi.org/10.1109/52.62930
https://doi.org/10.1145/3542947
https://arxiv.org/abs/2405.17287
https://doi.org/10.1016/j.cola.2023.101223
https://doi.org/10.1109/RE.2016.45
https://doi.org/10.1109/RE.2018.00067
https://doi.org/10.4018/978-1-60566-264-0.ch023
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/CPPS.2016.7483922

	Abstract
	1 Introduction
	2 Demonstrative case
	2.1 Engineering process
	2.2 Lessons learned and requirements

	3 Background: Subjective logic
	4 Approach
	4.1 Contextual component: confidence in engineers
	4.2 Subjective component: engineers' confidence in design by consistency
	4.3 Objective component: engineers' certainty in their opinions by model distance
	4.4 Putting it all together: fusing belief and presenting probabilistic evidence

	5 Evaluation: (Why) Does this work?
	5.1 Safety properties
	5.2 Liveness properties

	6 Discussion
	6.1 More agile requirements engineering
	6.2 Systematic methods to subjective logic through sound MDE concepts
	6.3 Caveats and limitations
	6.4 Challenges and research opportunities

	7 Related work
	8 Conclusion
	References

