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Approach

Context and Research Problem

Methods

Results and takeaways

Idealized setup
-Access to the whole problem
-Opinions about every state
-Uncertainty is synthetic

Idealized but humanlike setup
-Access to the whole problem
-Opinions about some states
-Uncertainty is synthetic

Goal
�Repair invalid models by model transformations

Problem
�Complex models → long repair sequences
�Automation is needed

Opportunity
�Modeling projects are longitudinally extensive
�Learn repair patterns as we go

Model repair
Basics
�Agent learns by trial and error
�Pro: does not require historical data
�Policy: state to MT-rule mapping (probability)

Limitation
�Shallow learning curve (learning takes time)

Goal
�Guide RL by rapidly emerging (uncertain) opinions

Reinforcement learning (RL)

Human setup
-Access to part of the problem
-Opinions about some states
-Uncertainty is measured 2, 3
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�Performance metric:
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Shaped policy
�Opinions bias the agent’s decisions

Default policy
�Uniform probability distribution of actions

Opinions
�Trade-off: early insights vs evidence
�By subjective logic

�12x12 version of the Frozen Lake
�Start→goal: ≥22 steps
�20% of states marked terminal

�Agent
�Algorithm: discrete policy gradient
�Learning rate: 0.9
�Discount factor: 1.0

�Learning on 10 000 episodes
�Reward model

�Terminal state: reward = 0
�Goal state: reward = +1
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Evaluation

Takeaways

All opinions, even if uncertain, can be 
of high utility.

In the charts, cumulative reward tends to be 
significantly higher than “No advice” and 
“Random”.

A single human advisor is as 
effective as a synthetic oracle.

In the “Single Human Advisor” charts, 
cumulative reward tends to be similar to that 
of the “Synthetic Oracle” charts.

A single human advisor can be more 
efficient than a synthetic oracle.

In the “Single Human Advisor” charts, the 
same high reward is obtained at lower advice 
quotas (only 10% and 5% vs 100% and 20%).

Real cooperating humans’ 
performance is comparable to that 

of synthetic advisors.

In the “Two Cooperating Humans” charts, 
cumulative reward tends to be similar to the 
other two cases.

*% denotes opinion quota, i.e., the number of 
opinions compared to the number of states
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