Towards Model Repair by Human Opinion-Guided Reinforcement Learning

Kyanna Dagenais

McMaster University – Hamilton, Canada dagenaik@mcmaster.ca | kyannadagenais.ca

Context and Research Problem

Model repair

Goal

▶ Repair invalid models by model transformations

Problem

 \blacktriangleright Complex models \rightarrow long repair sequences Automation is needed

Model M	
	New M'

tion	actions (MT rules) mt1 mt2 mt3					
	s ₁	p ₁₁	p ₁₂	р ₁₃		
	tes s ₂	р ₂₁	<i>p</i> ₂₂	р ₂₃		
	sta s³	р 31	р ₃₂	р ₃₃		
\neg						

Reinforcement learning (RL)

Basics

► Agent learns by trial and error

Pro: does not require historical data

► Policy: state to MT-rule mapping (probability)

Limitation

Opportunity

Modeling projects are longitudinally extensive Learn repair patterns as we go

Shallow learning curve (learning takes time)

Goal

Guide RL by rapidly emerging (uncertain) opinions

Methods

Approach			Mapping betv	veen RL and MDE
Benchmark	Opinions	Subjective logic	RL	MDE
 Frozen Lake (Open AI) Performance metric: 	 Trade-off: early insights vs evidence By subjective logic 	 Probabilistic logic + uncertainty¹ P=b+au A 100% uncertainty 	Frozen lake	Design space
cumulative reward		1=b+d+u	Agent	Current model state
		Uncertainty <i>discounts</i> the weight of belief	Action (step)	Model transformation
		75% 50% uncertainty	(0,0) Initial state	Invalid model
			Goal state	Valid model
$\sim \infty$	Human 📄 📑	0% 62.5% 100%	🛜 Terminal state	Model beyond repair
		<u>b</u> elief "75% sure, but I'm uncertain"	Evaluation	
Problem Space			 ►12x12 version of the ► Start→goal: ≥22 ► 20% of states me ► Agent 	Frozen Lake steps arked terminal

Agent

¹ A. Jøsang. 2016. Subjective Logic. Springer. ²K. Dagenais and I. David. 2024. Driving Requirements Evolution by Engineers' Opinions. MPM4CPS'24@MODELS ³K. Dagenais and I. David. 2024. Opinion-Guided Reinforcement Learning. Tech. Rep. arXiv:2405.17287 [cs.LG]

Uniform probability distribution of actions

Opinions bias the agent's decisions

- Algorithm: discrete policy gradient
- ► Learning rate: 0.9
- ► Discount factor: 1.0
- ► Learning on 10 000 episodes
- ► Reward model
 - Terminal state: reward = 0
 - ► Goal state: reward = +1

Results and takeaways

Results

*% denotes opinion quota, i.e., the number of opinions compared to the number of states

Takeaways

Synthetic Oracle

<u>Idealized</u> setup

-Access to the **whole** problem -Opinions about every state

-Uncertainty is **synthetic**

Single Human Advisor

<u>Idealized but humanlike</u> setup

- -Access to the **whole** problem
- -Opinions about **some** states
- -Uncertainty is **synthetic**

Two Cooperating Humans

<u>Human</u> setup

-Access to **part of** the problem -Opinions about **some** states -Uncertainty is **measured**^{2,3}

10000

10000

8000

8000

All opinions, even if uncertain, can be of **high utility**.

In the charts, cumulative reward tends to be significantly higher than "No advice" and "Random".

A single human advisor is **as** effective as a synthetic oracle.

Human Advisor" charts, "Single cumulative reward tends to be similar to that

of the "Synthetic Oracle" charts.

A single human advisor can be **more** efficient than a synthetic oracle.

In the "Single Human Advisor" charts, the same high reward is obtained at lower advice quotas (only 10% and 5% vs 100% and 20%).

Real cooperating humans' performance is **comparable** to that of synthetic advisors.

In the "Two Cooperating Humans" charts, cumulative reward tends to be similar to the other two cases.