
Towards Model Repair by Human Opinion–Guided
Reinforcement Learning

Kyanna Dagenais
McMaster University, Hamilton, Canada

dagenaik@mcmaster.ca

ABSTRACT
Model repair often entails long sequences of model transformations.
Finding the correct model repair sequence is challenging, and its
complexity increases with the number of model transformations
involved in the repair sequence. In realistic, longitudinally exten-
sive modelling settings, the same model repair scenarios might
be encountered repeatedly, providing an excellent opportunity to
learn the most appropriate repair actions through reinforcement
learning (RL). While such ideas have been explored before, the
efficiency of RL-based methods in long repair sequences is still an
open challenge. In this paper, we propose a method to improve
learning performance by human opinions—cognitive constructs
that are subject to uncertainty, but also emerge earlier than hard
evidence. Our findings indicate that opinion-based guidance signif-
icantly improves the learning performance, even with moderately
uncertain human opinions. To counter the uncertainty of individual
human advisors, our method allows for collaborative guidance by
experts of various expertise and skill levels.
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1 PROBLEM AND MOTIVATION
Model repair is a crucial activity that helps maintain models in a
valid state. In real complex models, model repair frequently requires
elaborate and long sequences of repair actions. Often, these repair
sequences are beyond the humanly feasible limit, necessitating
automation. One possible automation method is reinforcement
learning (RL). Model repair is a longitudinally extensive endeavour;
in real settings, modelling a complex system is a process that takes
months or years. This provides plenty of opportunities to encounter
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similarly invalid models and learn the best course of action. RL is a
particularly appropriate learning method in such settings because
it does not require massive volumes of historical data. Instead, RL
learns through trial and error. Such avenues have been explored in
model-driven engineering (MDE) previously [3], but mainstream
adoption is still lagging behind.

One of the key limitations of RL-based methods is their shallow
learning curve. In early learning phases, RL is less performant in
large and complex state spaces [2]. While performance improves in
later phases, this improvement often comes too late, invalidating
the purpose of using RL for complex tasks, e.g., model repair.

To improve the performance of RL, we propose leveraging the
domain knowledge of modellers for guidance. In model repair by
human-guided RL, modellers identify key states in the state space
(i.e., instance models) and express whether the specific state is ben-
eficial (likely converges to a valid model) or disadvantageous (likely
will lead to other model errors). To accommodate the inherent un-
certainty in these hints, we rely on human opinions – cognitive
constructs that reflect uncertainty. They emerge earlier than hard
evidence, but must be approached in a systematic fashion to form a
sound base of reasoning. We rely on subjective logic (SL) [12] for an
expressive and mathematically sound framework for quantifying
human preferences. SL also defines compositional semantics for
combining an arbitrary number of opinions into one joint opinion
that reflects the beliefs of different individuals. The ability to in-
clude multiple human advisors, in turn, positions our method as a
particularly good fit with real, industry-scale modelling settings.

Results. Our work demonstrates significantly improved learn-
ing performance, indicated by a much steeper learning curve
compared to traditional RL, and higher cumulative reward.

Benefits. Our method fosters faster model repair thanks to
the improved learning performance of the RL agent. Our method
also allows for including the human in the loop as our results
indicate that even fairly uncertain and sparse advice can improve
learning performance. Finally, our method allows for collaborative
guidance of model repair, rendering human advice more reliable
as individuals with various expertise and skill levels can be involved.

Example We use the running example shown in Fig. 1. The do-
main model is rendered invalid by the ambiguity of the name feature
in the WebApp class due to both defining and inheriting such a fea-
ture. In order to fix this model, an RL based automated model repair
algorithm may take one of several actions, including removing
classes or attributes. An engineer working with this model may
have beliefs about these actions, as shown below.

(1) Removing class NameElement→ Not beneficial
(2) Removing attribute name from NameElement class→ Neither
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Figure 1: Running example. (Adopted from [2].)

(3) Removing attribute name from WebApp class→ Beneficial
It would be ideal to guide the RL algorithm by these opinions, be-

cause they reflect the ideas of modeling experts. However, opinions
expressed in natural language lack clear semantics necessary for a
formal approach. Thus, we develop an approach in which opinions
and RL policies are expressed and fused through SL [12].

2 BACKGROUND AND RELATEDWORK
Reinforcement learning. RL [15] is a subset of machine learning

formalized by Markov decision processes, in which an agent acts
sequentially to learn optimal control of an environment. The en-
vironment is composed of states observable by the agent, and the
agent chooses its actions in accordance with the prevalent state. The
environment transitions to a new state and produces a reward based
on the agent’s action. The agent acts according to a policy, defined
as a mapping from states to actions. This policy, 𝜋 (action|state),
gives the conditional probability of an agent choosing a particular
action when in a particular state. By balancing exploration and
exploitation, the agent aims to learn the optimal policy, i.e., the one
that maximizes the sum of future rewards.

RL has been gaining popularity in MDE, with recent applications
in model repair [2], model transformations [9], AI simulation by dig-
ital twins [13], and inference of simulators [8]. Our work includes
MDE experts’ intelligence into RL to improve its performance and
to narrow the gap between human cognition and automation.

Opinions and subjective logic (SL). Relying on opinions to guide
otherwise autonomous computer machinery (such as RL agents)
requires epistemic uncertainty to be approached formally.

SL [12] is a formalism that defines the construct of an opinion. A
(binomial) opinion is defined as a tuple 𝜔𝑥 = (𝑏𝑥 , 𝑑𝑥 , 𝑢𝑥 , 𝑎𝑥 ), about
the truth of a boolean predicate 𝑥 , where𝑏𝑥 is belief in 𝑥 ,𝑑𝑥 disbelief
in 𝑥 , 𝑢𝑥 vacuity of evidence of 𝑥 , and 𝑎𝑥 prior probability of 𝑥 . The
parameters are subject to the constraints that 𝑏𝑥 , 𝑑𝑥 , 𝑢𝑥 , 𝑎𝑥 ∈ [0, 1],
and 𝑏𝑥 + 𝑑𝑥 +𝑢𝑥 = 1. The transformation of a binomial opinion to
the domain of probability is defined as 𝑃(𝑥) = 𝑏𝑥 + 𝑎𝑥𝑢𝑥 , while a
probability 𝑝(𝑥) transformed to a binomial opinion is defined as
𝜔 = (𝑝, 1 − 𝑝, 0, 𝑝). SL also defines fusion operators, functions that
map two binomial opinions into a new joint binomial opinion.

Example In the running example, opinions with complete cer-
tainty (𝑢 = 0) correspond to the following binomial opinions:
(1) Removing class NameElement→ Not beneficial

𝜔 = (0.2, 0.8, 0.0, 0.33)

(2) Removing attribute name from NameElement class→ Neither
𝜔 = (0.5, 0.5, 0.0, 0.33)

(3) Removing attribute name from WebApp class→ Beneficial
𝜔 = (0.8, 0.2, 0.0, 0.33)

SL has gained attention within MDE as a method to address un-
certainty in models. Troya et al. [16] present a survey of uncertainty
in software models, identifying SL as a method to model uncer-
tainty. To drive rule-based inconsistency management, Jongeling
and Vallecillo [11] annotate models with uncertainty information
translated into SL, allowing for alignment of several stakeholder
opinions. Burgueño et al. [5] represent human confidence in model
elements and infer confidence in generated artifacts. Bagheri and
Ghorbani [1] use SL to combine viewpoints in collaborative model-
ing. These works conclude that opinions from SL offer high utility
to MDE. Our work corroborates this observation in guided RL.

Related work. Model repair has been of particular interest in
MDE. Closest to our work are model repair techniques that ei-
ther rely on machine learning, human input, or both. The PAR-
MOREL framework [2] relies on a unique combination of RL and
user preferences to repair models. However, it does not accom-
modate guidance and uncertainty of human input, which limits
the approach’s performance. Barriga et al. [4] report on artificial
intelligence driven approaches for model repair. These approaches
include neural networks, genetic algorithms, tree planning, RL, and
more. While the approaches are diverse, the paper recognizes that
RL drives the majority of current work that uses artificial intelli-
gence for model repair. To that end, our work focuses on improving
the performance of RL agents for model repair. Eisenberg et al. [10]
use multi-objective optimization to explore model transformation
chains by user-defined optimization objectives. These objectives
include number of transformation steps, transformation coverage,
and model coverage. This approach uses meta-heuristic algorithms.
In contrast we use RL.

3 APPROACH
We now present the approach to model repair by human-guided
RL and evaluate it on a synthetic case. First, the advice is provided
(Sec. 3.1). This step includes calibrating the uncertainty of the advice
and subsequently, compiling the advice into a subjective opinion.
Second, the RL agent’s policy is shaped (Sec. 3.2). This step includes
translating the policy, which consists of probabilistic values, to
subjective opinions, fusing the previously obtained advice (as a
subjective opinion) with the policy (as a subjective opinion), and
finally, translating the fused policy into the probability domain.

3.1 Providing advice
In the initial step of our approach, advice is provided by the advisor
once before the agent begins training. This advice denotes the
perceived benefits of the RL agent performing specific actions in
particular states. It is a subjective construct of the advisor’s beliefs
and is subject to uncertainty on the end of the advisor. As it is
difficult to meaningfully express oneself numerically, we provide
mechanisms to calibrate base rate and uncertainty and a DSL to
elicit an attitude that aids in shaping advice into an opinion.
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Calibrating 𝑎 and 𝑢. To calibrate base rate 𝑎, the likelihood of an
action being beneficial with no prior information, we use the struc-
tural properties of the problem. For example, given a set of actions
𝐴, the base rate is defined as 𝑎 = 1/∣𝐴∣. Uncertainty 𝑢 is calibrated
by an appropriate distance metric, e.g., using the quantification
of domain expertise. For example, a mechanical engineer working
with a mechanical model should be assigned a lower uncertainty
than a mechanical engineer working with an electrical model.

Computing opinions. After setting 𝑎 and 𝑢, belief 𝑏 and disbelief
𝑑 are computed. Given the constraints from Sec. 2, once a value for
𝑢 is calibrated, the remaining weight (1−𝑢) is distributed between
𝑏 and 𝑑 . To elicit attitude towards options, we express advice values
in an 𝑛-point scale. Thus, the calculation for the 𝑗th item in this
scale in ascending order of confidence from least to most is defined
as 𝑏 =

𝑗−1
𝑛−1 × (1 − 𝑢) ∣ 𝑗 ∈ {1..𝑛}, and 𝑑 = (1 − 𝑢) − 𝑏.

Example In the running example, since there are 3 actions, the
base rate is calibrated as 𝑎 = 0.33. We will assume the uncertainty
has been calculated using an appropriate metric to 𝑢 = 0.2. For
eliciting attitude, we assume there is a 3-point scale, with levels (i)
not beneficial, (ii) neither, and (iii) beneficial. Thus, the engineer’s
advice may be expressed as an opinion, as follows.

(1) Removing class NameElement→ Not beneficial
𝜔 = (0.15, 0.65, 0.2, 0.33)

(2) Removing attribute name from NameElement class→ Neither
𝜔 = (0.4, 0.4, 0.2, 0.33)

(3) Removing attribute name from WebApp class→ Beneficial
𝜔 = (0.65, 0.15, 0.2, 0.33)

3.2 Policy shaping
After transforming advice into an opinion, it can guide the agent via
policy shaping. Policy shaping involves guiding the agent by biasing
its exploration strategy. In our approach, this means infusing the
agent’s policy with advice in the form of opinions.

Transforming the policy. Since the agent’s policy is expressed in
terms of probabilities (Sec. 2), first, we transform the agent’s policy
from probabilities to opinions. This is achieved by taking the policy
for each state-action pair 𝜋(action∣state) = 𝑝 and writing it as an
opinion 𝜔agent ∶ 𝑝 ↦ (𝑝, 1 − 𝑝, 0, 𝑝).

Fusing advice and policy. The transformed policy is fused with
the advisor’s opinions. As explained in Sec. 2, SL provides fusion
operators to combine opinions. While several operators exist, our
approach uses Belief Constraint Fusion (BCF), described in detail in
[12]. For each opinion provided by the advisor, the corresponding
agent opinion about the same state-action pair is fused to create a
new, joint opinion, such that 𝜔agent ⊗ 𝜔advisor → 𝜔fused.

Transforming fused opinion from opinion to probability domain.
Finally, the fused opinions𝜔fused are translated back to probabilities.
This step uses the relationship described in Sec. 2, such that 𝑝 ∶
𝜔fused ↦ 𝑏 + 𝑎𝑢. Since the actions for each state form a complete
probability space, the condition that for all actions available in a
particular state ∑𝑝(action∣state) = 1 must hold. Thus, we apply
normalization to scale the sum of probabilities.

3.3 Evaluation
We evaluate the effect of human advice on RL-based model repair
by simulation. We are interested in modelling scenarios in which
long sequences of edit operations are learned. Such data sets are not
publicly available, so we resort to a synthetic simulation scenario.

Setup. We model the long-running model repair endeavour in
the simulation scenario as an RL problem with many episodes. The
RL agent’s goal is to find a path from the start state (broken model)
to the goal state (valid model) while avoiding terminal states (intro-
ducing other errors or irreparably breaking the model). A terminal
state ends the episode with no reward, while the goal ends the
episode with a reward of 1. We mark 20% of the state space as
terminal. Long repair sequences are modelled by placing the start
and goal states sufficiently far from each other. The agent navi-
gates through this space using a predefined set of actions and learns
the most optimal sequence of actions. We simplify the number of
possible actions to four CRUD operations. By this, our problem is
semantically equivalent to a two-dimensional exploration problem
for which Open AI’s Gym toolkit offers readily available training
environments. We use the Frozen Lake environment. We set the
grid size and number of episodes by manual experimentation. We ob-
serve that the unadvised agent shows sufficient improvement after
about 5 000 episodes in a 12×12 grid; thus, we use 10 000 episodes.
This grid size requires particularly long edit sequences—at least the
Manhattan distance between the start and goal state, i.e., 22 steps.

As is customary in RL benchmarks, we use cumulative reward as
our evaluation metric, i.e., the sum of rewards accumulated through-
out training. A well-performing agent will accumulate rewards in
early episodes and continuously gain rewards throughout training.

3.4 Results
Advised RL performs significantly better than unadvised RL. Fig. 2

shows a steeper learning curve in advised cases compared to the
unadvised one. Even with limited human advice, learning perfor-
mance improves substantially earlier than in the unadvised case.
Both with synthetic and human advice, the cumulative reward is
higher than without advice.

Even uncertain advice is useful. As shown in Tab. 1, in the cases of
moderate-high uncertainty (𝑢 = 0.6, 0.8), the advised agents collect
more cumulative reward than the unadvised agent.

Human guidance is as effective as an idealized, fully-informed
synthetic advisor. This trend is demonstrated by the comparable
cumulative rewards in Tab. 1. The performance is within 5%
in three of five evaluated cases (𝑢 = 0.0, 0.2, 0.6), with one case
showing an improvement of the human over the machine (𝑢 = 0.2).
In two of five evaluated cases, the difference is more pronounced,
once in favor of the machine advisor (𝑢 = 0.4) and once in favor of
the human advisor (𝑢 = 0.8). Improvements due to human advice
are particularly apparent in highly uncertain situations.

The human advisor is more efficient than the fully-informed or-
acle. The human advisor achieves a comparable performance by
advising about only a fraction of the design space (10%). This
alleviates the typical problem of human-in-the-loop RL in which
the human becomes the bottleneck.
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(a) Synthetic advisor (100% quota)
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(c) Synthetic advisor (100% quota)
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Figure 2: Cumulative rewards with different advisors

Table 1: Cumulative rewards. Bold is best at the given level
of certainty. (Unadvised: 607.267. Random: 0.100.)

𝑢 Synthetic Human Δ

0.0 9 386.467 8 907.733 -5.08%
0.2 8 511.367 8 607.500 +1.13%
0.4 7 476.633 4 727.433 -36.77%
0.6 2 751.833 2 737.600 -0.52%
0.8 1 454.400 1 907.933 +31.18%

4 DISCUSSION AND CONCLUSION
The main takeaway of the evaluation is that opinions, even with
uncertainty, improve the performance of the RL agent. This suggests
that advised agents can navigate from the broken model to the
valid model more efficiently than unadvised agents. By testing
synthetic and human sources of advice, we see that human guidance
is as effective as an idealized advisor in most cases. We note that
in some cases, the human advisor is actually more effective than
the synthetic one. Thus, it is clear that human creativity is more
sophisticated than an idealized machine. This highlights the need
for mixed human-machine intelligence in the model repair process.
A detailed analysis of results is available in our technical report [7].

As discussed in Sec. 3, we assume uncertainty is calibrated with
an appropriate measure. By measure, we mean a set of values M
with operations 0 ∶→ M,+ ∶ M×M → M (0 neutral, + associative
and commutative) and an order relation ≤ on M. Measures to cali-
brate uncertainty have been explored by Dagenais and David [6]. A
pertinent example is the seniority of modelling experts, with more
experienced experts receiving lower uncertainty scores than less
experienced ones. Another such measure is the relative expertise
of single modelers w.r.t. to a field, e.g., mechanical engineers are
assigned lower uncertainty when working with mechanical models
and higher when working with electrical models.

We assumed advice was given once before training. However,
given the appropriate interaction infrastructure, our approach can
be applied at any point during the training process. We envision
conversational modeling [14] being a critical enabler here. We use a
simplistic DSL to provide advice, but see opportunities to generate
DSLs for RL guidance in particular problem spaces.

Conclusion. In this paper, we identify opinion-guided reinforce-
ment learning as a significant technique to augment traditional
model repair methods. We assess the performance of opinion-
guided RL under various uncertainty models to understand the
effects of human opinion on the exploration processes, such as
model repair with long repair sequences. We observe that opinions,
even with moderate levels of uncertainty, result in a steeper learn-
ing curve and improve the RL agent’s performance. This has clear
benefits for model repair as (i) the advantages of RL manifest earlier
in the modelling endeavour and (ii) identifying the correct repair
sequences becomes tractable. As opinions emerge earlier than hard
evidence can be produced, opinion-guided RL offers improvement
to traditional methods in model repair with long repair sequences.
We envision our work being employed by tool builders to augment
model repair methods with mixed human-machine intelligence.

Ongoing work focuses on developing a prototype framework.

REFERENCES
[1] Ebrahim Bagheri and Ali A. Ghorbani. 2009. A belief-theoretic framework for the

collaborative development and integration of para-consistent conceptual models.
J. Sys. & Soft. 82, 4 (2009), 707–729. https://doi.org/10.1016/j.jss.2008.10.012

[2] Angela Barriga et al. 2022. PARMOREL: a framework for customizable model
repair. Soft. Sys. Mod. 21, 5 (2022), 1739–1762.

[3] Angela Barriga, Adrian Rutle, and Rogardt Heldal. 2019. Personalized and Auto-
matic Model Repairing using Reinforcement Learning. In ACM/IEEE 22nd Intl.
Conf. on Model Driven Engineering Languages and Systems Companion. 175–181.

[4] Angela Barriga, Adrian Rutle, and Rogardt Heldal. 2022. AI-powered model
repair: an experience report—lessons learned, challenges, and opportunities. Soft.
Sys. Mod. 21, 3 (2022), 1135–1157. https://doi.org/10.1007/s10270-022-00983-5

[5] Loli Burgueño et al. 2018. Expressing confidence in models and in model trans-
formation elements. In Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. 57–66.

[6] Kyanna Dagenais and Istvan David. 2024. Driving Requirements Evolution by
Engineers’ Opinions. In ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion, MODELS-C. ACM.

[7] Kyanna Dagenais and Istvan David. 2024. Opinion-Guided Reinforcement Learning.
Technical Report. arXiv:2405.17287 [cs.LG]

[8] Istvan David and Eugene Syriani. 2024. Automated Inference of Simulators in
Digital Twins. CRC Press, 122–148. https://doi.org/10.1201/9781003425724-11

[9] Martin Eisenberg, Hans-Peter others Pichler, Antonio Garmendia, and Manuel
Wimmer. 2021. Towards Reinforcement Learning for In-Place Model Trans-
formations. In 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS). 82–88.

[10] Martin Eisenberg, Apurvanand Sahay, Davide Di Ruscio, Ludovico Iovino, Manuel
Wimmer, and Alfonso Pierantonio. 2024. Multi-objective model transformation
chain exploration with MOMoT. Inf Softw Technol 174 (2024), 107500.

[11] Robbert Jongeling and Antonio Vallecillo. 2023. Uncertainty-aware consistency
checking in industrial settings. In ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. 73–83.

[12] Audun Jøsang. 2016. Subjective logic. Vol. 3. Springer.
[13] Xiaoran Liu and Istvan David. 2024. AI Simulation by Digital Twins: Systematic

Survey of the State of the Art and a Reference Framework. In ACM/IEEE Intl.
Conf. on Model Driven Engineering Languages and Systems Companion. ACM.

[14] Sara Pérez-Soler et al. 2018. Collaborative Modeling and Group Decision Making
Using Chatbots in Social Networks. IEEE Software 35, 6 (2018), 48–54.

[15] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[16] Javier Troya, Nathalie Moreno, Manuel F. Bertoa, and Antonio Vallecillo. 2021.
Uncertainty representation in software models: a survey. Software and Systems
Modeling 20, 4 (2021), 1183–1213. https://doi.org/10.1007/s10270-020-00842-1

https://doi.org/10.1016/j.jss.2008.10.012
https://doi.org/10.1007/s10270-022-00983-5
https://arxiv.org/abs/2405.17287
https://doi.org/10.1201/9781003425724-11
https://doi.org/10.1007/s10270-020-00842-1

	Abstract
	1 Problem and motivation
	2 Background and related work
	3 Approach
	3.1 Providing advice
	3.2 Policy shaping
	3.3 Evaluation
	3.4 Results

	4 Discussion and Conclusion
	References

